login
Updated 07/16/2024
11

Wafer breakage at flash heating

One of the operations at the microchip processing is very fast heating - flash heating

The equipment is as follows:

A wafer is located on the bumps between the centering pins of the holder that is made from quartz. The holder is kept within the chamber. The heating is performed with light.

Botton lights keep a stable temperature while the upper aims to heat the wafer fast to reach about 1000C for about 1 sec.

Sometimes the process results in the wafer breakage which is a big problem: wafer scrap and the equipment contamination with the broken pieces


Find the root cause of the wafer breakage and create a solution of the problem.

Login to comment

Similar projects

The process is related to microelectronics - microchip manufacturing. The purpose of the process is to create a SiO2 layer on the surface of a Si wafer. Equipment: Vertical furnace to heat the wafers in the Q2 atmosphere and perform oxidation on the wafer surface. Process: The oxidation occurs on the front side and on the back side of the wafer Requirements: Create a SiO2 thin layer with a certain thickness and low sigma - low standard deviation of the thickness between the wafers and within the wafer Failure: Wafers from the lower zone have higher thickness and significantly higher within wafer sigma (standard deviation of the thickness within the wafer)

Anatoly Agulyansky avatar
Anatoly Agulyansky
Mike Agulyansky avatar
Alex Agulyansky avatar
Anatoly Agulyansky avatar

Wet cleaning is widely used in microchip manufacturing. Single wafer equipment is working as follows. A wafer rotates, and chemistry is poured from a movable nozzle. Water rinsing is performed at the end of the process. Loading of a new batch of the chemistry resulted in excursion - a strongly increased amount of defects was observed on the wafer after the processing. The project is dedicated to the failure analysis and creation of innovative solutions.

Anatoly Agulyansky avatar
Anatoly Agulyansky

The project was dedicated to production yield improvement in microchip manufacturing. The bumps are created on the top of a wafer and used for the final test of all dies. Only good dies are taken for the packaging. All dies that fail the test will be scrapped. The process yield depends on the amount of "good" and "bad" dies. It was revealed that in some cases, the time between the end of the process and the final test impacts the yield. The longer the dwelling, the more dies fail the final test. If the dwelling exceeds hundreds of hours, the amount of failed dies becomes dramatically high, which results in the scrapping of the whole wafer. The problem was analyzed and solved.

Anatoly Agulyansky avatar
Anatoly Agulyansky
Richard Platt avatar
Alex Agulyansky avatar