login
Updated 07/25/2024
11

SiO2 thin film creation in Diffusion furnace - Process Functional Modeling

The Process Functional Modeling of the SiO2 thin film layer creation has revealed problems as follows:

  • Two operations: LOADING (loading of the boat with wafers into the furnace) and UNLOADING (removing of the boat with wafers from the furnace) found as the most problematic
  • It is important that the operations where wafers move within the furnace seem the most problematic!!!



Based on the concept of moving wafers, let's describe the models of the failures of bottom zone wafers' thickness sigma (thickness standard deviation)


Model 1. The loading of the boat with wafers causes overheating at the bottom zone of the furnace


During loading the wafers into the furnace (that is at 300C), the cold wafers "cool" the bottom thermocouple (TC) that resulting in strong overheating of the bottom zone.



Model 2. The Loading of the boat with wafers causes the presence of air residue in the bottom zone of the wafer.


During the loading of the wafers, the N2 flow mainly removes the air from the furnace, but some residual amount may remain and it will be collected in the bottom zone of the furnace. As a result, the wafers in the bottom zone will start oxidation earlier and will receive more O2.


Model 3. The unloading of the wafers from the furnace will result in additional uncontrolled oxidation on the bottom zone wafers


During the unloading of the boat with wafers, the bottom wafers expose to the atmosphere first. They have a higher temperature when exposed to the air and they keep the temperature longer because they are placed close to the massive bottom flange.


Possible solutions:


  1. Disconnect the temperature control during the loading and unloading of the boat with wafers
  2. Use Ar instead of N2 during the loading and unloading
Login to comment

Similar projects

Wet cleaning is widely used in microchip manufacturing. Single wafer equipment is working as follows. A wafer rotates, and chemistry is poured from a movable nozzle. Water rinsing is performed at the end of the process. Loading of a new batch of the chemistry resulted in excursion - a strongly increased amount of defects was observed on the wafer after the processing. The project is dedicated to the failure analysis and creation of innovative solutions.

Anatoly Agulyansky avatar
Anatoly Agulyansky

The project was dedicated to production yield improvement in microchip manufacturing. The bumps are created on the top of a wafer and used for the final test of all dies. Only good dies are taken for the packaging. All dies that fail the test will be scrapped. The process yield depends on the amount of "good" and "bad" dies. It was revealed that in some cases, the time between the end of the process and the final test impacts the yield. The longer the dwelling, the more dies fail the final test. If the dwelling exceeds hundreds of hours, the amount of failed dies becomes dramatically high, which results in the scrapping of the whole wafer. The problem was analyzed and solved.

Anatoly Agulyansky avatar
Anatoly Agulyansky
Richard Platt avatar
Alex Agulyansky avatar

The number of particles is a critical parameter for microchip manufacturing. Each, even a very small particle, can potentially destroy a die. Therefore filters are widely used. Water is always filtered through fine filters to reduce the number of particles. Nevertheless, if the filter is too fine, it could cause a problem. This issue was investigated with the help of Functional Modeling. Possible solutions were generated using 40 Inventive Principles.

Anatoly Agulyansky avatar
Anatoly Agulyansky
Alex Agulyansky avatar